Contains the results of automated reasoning policy evaluation, including
logical findings about the validity of claims made in the input content.
Source code in src/aws_sdk_bedrock_runtime/models.py
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587 | @dataclass(kw_only=True)
class GuardrailAutomatedReasoningPolicyAssessment:
"""Contains the results of automated reasoning policy evaluation, including
logical findings about the validity of claims made in the input content.
"""
findings: list[GuardrailAutomatedReasoningFinding] | None = None
"""List of logical validation results produced by evaluating the input
content against automated reasoning policies.
"""
def serialize(self, serializer: ShapeSerializer):
serializer.write_struct(
_SCHEMA_GUARDRAIL_AUTOMATED_REASONING_POLICY_ASSESSMENT, self
)
def serialize_members(self, serializer: ShapeSerializer):
if self.findings is not None:
_serialize_guardrail_automated_reasoning_finding_list(
serializer,
_SCHEMA_GUARDRAIL_AUTOMATED_REASONING_POLICY_ASSESSMENT.members[
"findings"
],
self.findings,
)
@classmethod
def deserialize(cls, deserializer: ShapeDeserializer) -> Self:
return cls(**cls.deserialize_kwargs(deserializer))
@classmethod
def deserialize_kwargs(cls, deserializer: ShapeDeserializer) -> dict[str, Any]:
kwargs: dict[str, Any] = {}
def _consumer(schema: Schema, de: ShapeDeserializer) -> None:
match schema.expect_member_index():
case 0:
kwargs["findings"] = (
_deserialize_guardrail_automated_reasoning_finding_list(
de,
_SCHEMA_GUARDRAIL_AUTOMATED_REASONING_POLICY_ASSESSMENT.members[
"findings"
],
)
)
case _:
logger.debug("Unexpected member schema: %s", schema)
deserializer.read_struct(
_SCHEMA_GUARDRAIL_AUTOMATED_REASONING_POLICY_ASSESSMENT, consumer=_consumer
)
return kwargs
|
Attributes
findings
class-attribute
instance-attribute
List of logical validation results produced by evaluating the input
content against automated reasoning policies.